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ABSTRACT

Computer simulations of orbital scenarios were performed in order to examine the effects of 1)

orbital altitude, 2) equator crossing time, 3) attitude uncertainty, and 4) orbital eccentricity on

ozone observations by potential future satellites. These effects were assessed in two ways: 1)

by determining changes in solar and viewing geometry (solar and spacecraft zenith angles, and

relative azimuth angle) and/or 2) by determining Earth daytime coverage loss. The importance

of changes in geometry on ozone retrieval was determined by simulating uncertainties in the

TOMS ozone retrieval algorithm. The major findings, rated in order of importance, are
delineated below.
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Drift of the equator crossing time (ECT) from local noon would have the largest

effect on the quality of ozone derived from TOMS. The most significant effect

of this drift is the loss of Earth daytime coverage in the winter hemisphere. The

loss in coverage increases nonlinearly with the drift in local time, from 1 ° latitude

for +1 hour from noon, 6 ° in latitude for +3 hours from noon, to 53 ° for +6

hours from noon. Maximum daytime coverage occurred for the local noon ECT.

An additional effect is the increase in ozone retrieval errors due to high average
solar zenith angles.

To maintain contiguous Earth coverage, the maximum scan angle of the sensor

must be increased with decreasing orbital altitude. The maximum scan angle
required for full coverage at the equator varies from 60 ° at 600 km altitude to

45 ° at 1200 km. The increase in scan angle produces an increase in spacecraft

zenith angle 0, which decreases the ozone retrieval accuracy. The range in 0 was

--72 ° for 600 km to -_57 ° at 1200 km. However, because of scan overlap

between adjacent orbits the highest spacecraft zenith angles are required only at

the equator. Despite overlap there is a unique scan angle required to view the

poles for each altitude. The 0 associated with these scan angles ranged from
62.5 ° at 600 km to 52 ° at 1200 km.

The effect of elliptical orbits is to create gaps in coverage along the subsatellite

track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced

a maximum Earth coverage gap of about 45 km at the perigee at nadir (this

equals about 1 Nimbus-7 TOMS pixel on the ground). The gap travels on the

Earth from the pole to the equator in a month. Orbits with less eccentricity
produce smaller coverage gaps.

An attitude uncertainty of 0.1 ° in each axis (pitch, roll, yaw) produced a

maximum ozone retrieval error of 1.3 Dobson Units (DU) at 955 km under the

worst conditions (maximum attitude configuration, maximum scan angle to view

the pole, and maximum solar zenith angle). The error decreased for lower

altitudes and increased for higher altitudes, reaching a maximum of 1.4 DU at
1200 km.
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1.0 INTRODUCTION

After 11 years of continuous operation, the Total Ozone Mapping Spectrometer (TOMS) on

Nimbus-7 is nearing the end of its useful life. For the purpose of providing continuous coverage

and assessing the long-term trends of atmospheric ozone, it is essential that a follow-on sensor

be flown. To maximize the acquisition of a long-term data base, the follow-on TOMS would

preferably be flown in a Nimbus-7-type orbit. However, the availability of funds and launch

vehicles may dictate that the sensor be flown in a different orbital configuration. It is important

to know the impacts of these orbital and sensor parameters on ozone retrieval before launch in

order to determine the limits of acceptability of the orbital configurations. The purpose of this

study is to examine the importance of orbital and attitude parameters on the retrieval of ozone,

by emphasizing the effects on solar and viewing geometry. Nimbus-7 TOMS results have shown

that errors in ozone retrieval are functions of the solar zenith angle, spacecraft zenith angle, and

total ozone. The solar and spacecraft zenith angles are directly related to the selection of orbit.

Azimuthal dependence was unimportant for Nimbus-7 (nearly constant for the ascending node)

but may become important for other orbits. Thus the study focuses on assessing the variation

of solar and spacecraft geometry as a function of orbital altitude and equator crossing time

(ECT), and secondarily their potential effect on ozone retrievals using the TOMS ozone retrieval

algorithm. The study also assesses the changes in Earth daytime coverage due to changing ECT

and elliptical orbits. Hopefully, this study provides useful information from which launch

decisions may be made.

1.1 Nimbus-7 and TOMS

Nimbus-7, which contained seven other sensors in addition to TOMS, was launched in 1978 into

a Sun-synchronous, noon local ECT, near-circular orbit at 955 km. Relevant platform
characteristics of Nimbus-7 and sensor characteristics of TOMS are summarized in Table 1.

After 11 years the Nimbus-7 orbital parameters have changed only slightly, as shown in Table 2.

The ECT has varied from +45 rain. of noon.

The follow-on TOMS is proposed to fly on the SCOUT vehicle. The orbital parameters for

SCOUT have not yet been decided, but the TOMS sensor will be similar to the Nimbus-7

TOMS, with a 3 ° instantaneous field-of-view (IFOV) and scanning in steps of 3 °.

2.0 METHODS

2.1 Circular Orbit Scenarios

To examine the effect of orbital altitude on ozone retrievals, a set of 8 orbital altitudes were

specified, ranging from 600 km to 1200 km in increments of I00 km, and including a 955-km

orbit to simulate Nimbus-7. These orbits were selected to span the range of possible orbital

altitudes for candidate launch vehicles. In this analysis, all orbits were circular (eccentricity =

0), as was Nimbus-7 (nearly).



Table 1. Nimbus-7 Orbital Parameters and TOMS Sensor Characteristics

Nimbus-7 Orbital Parameters

Altitude 955 km

Period 104 min

Inclination 99.3"

Equator Crossing Time Noon Local

Eccentricity _ 0

TOMS Sensor Characteristics

Maximum Scan Angle 51 °

Scan Period 8 see

IFOV 3 °

Ground IFOV at Nadir 50 km

Pixels Along Scan 35

Ground Coverage 2,800 km

Table 2. Present Nimbus-7 Orbital Parameters

Epoch 19900503

Semimajor Axis 7327.2 km

Eccentricity 0.0008758

Inclination 99.2 °

Period 104.0 min

Perigee Height 942.6 km

Apogee Height 955.4 km

Computations of orbital and sensor characteristics of these different altitudes were subject to the

following constraints:

a. The orbits were assumed Sun-synchronous with a near-noon ECT

b. The sensor scan angle was adjusted in increments of 3" to produce contiguous

global coverage at the equator

c. The instantaneous field of view CIFOV) and scan step angles were kept constant

at3 °.

2



These constraints produced orbital and sensor parameters as given in Table 3. The following

describes how these parameters were computed. The inclination required to keep the orbits Sun-

synchronous was computed by

2aR 
cos(0-

3J2(GM)It2R_

(1)

(Stewart, 1985), where i is the inclination of the subsatellite track relative to the equator, Q is

Earth's rotation rate about the Sun, R_ is the radius of the Earth, R, is the height of the satellite

measured from the center of the Earth (= P_ + Hs, where Hs is the altitude of the satellite above

the Earth's surface), J2 is the Earth oblateness factor, G is the universal gravitational constant,

and M_ is the mass of the Earth. Values for these parameters were taken from Stewart (1985).

Orbital period was computed by

I R 3 11/2
(2)

(Maul, 1985). Division by 60 converts period into minutes.

Table 3. Orbital and Sensor Parameters for Satellites at 8 Different Orbital Altitudes (Nimbus-7/TOMS

parameters are shown for comparison)

600 700

Period (rain) 96.54 98.63

Inclination (°) 97.78 98.18

Maximum Scan Angle

(°) 60.0 57.0

Scan Period (sec) 4.5 5.4

Pixels/Scan 41 39

Ground IFOV Nadir

(km) 31.4 36.7

Ground IFOV Scan

Edge (Relative to

Nadir)

Altitude (kin)

800 900 955 1000 1100 1200

100.73 102.74 104.01 104.97 107.11 109.27

98.60 99.03 99.27 99.47 99.93 100.41

54.0 51.0 51.0 49.5 48.0 45.0

6.3 7.3 7.8 8.2 9.2 10.3

37 35 35 34 33 31

41.9 47.1 50.0 52.4 57.6 62.9

17.5 12.8 9.9 8.0 7.3 6.8 5.8 5.2

Computatio0 of the half scan angle required to produce contiguous Earth coverage at the equator

is more complicated and requires an accompanying figure for explanation. Figure 1 shows the

Earth-satellite geometry and the definition of terms used in the derivation.



X

A E
Hs

Earth Surface

R = Re+A

Re

Rs = Re+Hs

( )
Figure 1. Schematic of Earth-satellite geometry showing terms used in computations of orbital parameters.
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The problem is to find the maximum satellite scan angle oJ_, given the spacecraft altitude radius

Rs and the Earth angle in degrees _ required to produce contiguous coverage at the equator from

one orbit to the next. This Earth angle is determined by

_-L_-O.25(°/min)P (3)

8-1L 1/2 (4)

where L] is the longitude where the subsatellite ground track crosses the equator for the first

orbit, and L 2 is the longitude of the second orbit. The satellite must scan one-half this

longitudinal distance to maintain contiguous coverage, hence Eqn. 4. Inclination increases the

distance the satellite must scan, and thus the Earth angle. To account for inclination, Eqn. 4

must be multiplied by 1/cos(90-i), or 1/sin(i).

The angle _ and the distances X and R are easily found by

e-90-5 (5)

X-R tan8 (6)

R_(X2+ (7)

To find ot requires that the lengths A and E be known. This is accomplished by

A-R-R, (8)

and

E-[X2 +A 2-2XAcose] ll'z (9)

Using the sine rule, then

sina -A[Esine (10)

and clearly, too = 90 - or.

Since this computation of the scan angle is exact (hence the subscript) and in actuality the sensor

views the Earth in discrete pixels, each with a 3 ° field of view, it is necessary to find the scan

angle actually observed by the sensor in these IFOV increments. This was accomplished by



N-213t%+0.5 (11)

o -3[2N (12)

where N is the number of pixels in a scan. This value was then checked by computing the

increase in ground IFOV at the scan edges to ensure that the pixels only slightly overlapped at

the scan edge in successive orbits. This procedure resulted in minor changes in N, tS, and the

maximum half-scan angle, the final values of which are shown in Table 3.

Incidentally, the angle 0 in Figure 1 is defined as the spacecraft zenith angle (the angle from

local zenith to the spacecraft as viewed from the ground) and is computed by

sin0-RJR sino (13)

This value is used to determine the path length of radiance through the atmosphere.

The scan period was computed to ensure contiguous coverage along-track at nadir considering

the IFOV of 3 °. As such, computation of the scan period required knowledge of the ground

speed of the satellite

V-2_R,.IP (14)

The scan period P, to meet this requirement is then

P:-IFOV*HJV (15)

where IFOV is in radians and the numerator IFOV*I-L gives the ground IFOV (the instantaneous

field of view on the ground in m).

2.2 Earth Location Simulation

The Earth location algorithms use the orbital data described above to find the location of a pixel

on the Earth (in latitude/longitude coordinates) and the associated spacecraft and solar zenith and

azimuth angles. The spacecraft zenith angle 0 is defined as the angle between a vector from the

pixel ground point to nadir and a vector from the pixel to the spacecraft (see Figure 1). The

spacecraft azimuth angle ff is defined as the angle between a vector from the pixel ground

location to due north and a vector from the pixel to the subsatellite ground point, measured

clockwise from true north. The solar zenith 0o and azimuth 4,o angles are defined analogously

with respect to the Sun, and thus require, in addition to the pixel location, the time of day and

day of year of the observation at the pixel location.

The Coastal Zone Color Scanner (CZCS) Geolocation Algorithms code (Wilson et al., 1981) was

used to compute pixel location and spacecraft (viewing) geometry (spacecraft zenith and azimuth

angles), after modification resulting from thorough investigation of the code. The code was



modified for threereasons:1) to allow the use of different orbital and sensor parameters from

those of Nimbus-7 and the CZCS, 2) to resolve quadrant ambiguities occurring primarily near

the poles and the date line, and 3) to compute spacecraft azimuth relative to the pixel rather than

relative to the spacecraft as computed in the code. Since this latter modification is not available

in the reference, it is described here, by

cosO sia_s-cosbsin_p (16)

cosUZscos_ p

where ',Itp is the latitude of the pixel and ff', is the latitude of the subsatellite ground point.

Given pixel location (latitude and longitude) by the above algorithms, time of day from the local

ECT and spacecraft travel time, and day of year, the solar geometry (0o and 4>o)was computed

by standard methods described in Iqbal (1983). This method includes the Equation of Time, or

time correction factor, to account for asymmetry in the Earth's revolution around the Sun, such

that the Sun is not directly overhead at the equator at noon at the vernal equinox.

2.3 Elliptical Orbit Scenarios

The SCOUT mission may be placed into an elliptical transfer orbit before being placed into a

circular orbit. Alternatively, the orbit may deviate from a circular orbit over time. For these

reasons, it is important to discuss the impact of elliptical orbits on ozone observations. A set

of elliptical orbit scenarios were developed to examine this problem. Since the goal is to keep

the platform as close to a Sun-synchronous one, only Sun-synchronous elliptical orbits were

simulated.

For elliptical Sun-synchronous orbits, Eqn. 1 must be changed to

cos(0 2_a3"5(1-e2)20"9856 (17)

where a is the semimajor axis, e is the eccentricity, and other terms are as defined earlier. The

eccentricity is computed by

e-(a-h t,-Re)/a-(ha-h)/(2a) (18)

where a is the semimajor axis, hp is the perigee height, and hA is the apogee height. The

geometry of the problem is shown in Figure 2.

Since the expected orbit will be close to 955 kin, the various Sun-synchronous elliptical orbits

considered for the study were kept to configurations such that the minimum satellite altitude was

200 km or greater, and the maximum altitude, 1200 km or less. Characteristics of these orbits

are presented in Table 4.
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Figure 2. Schematic of elements of elliptical orbits. (Reprinted from Wertz, 1978.)



Table 4. Sun-Synchronous Elliptical Orbit Scenarios

Perigee Height Apogee Height Mean Altitude Semimajor Inclination

(kin) (kin) (km) Axis (km) Eccentricity (°)

400 955 677.5 7056 0.039 98.07

600 955 777.5 7156 0.025 98.50

800 955 927.5 7256 0.011 98.93

955 955 955.0 7333 0.000 99.27

200 1200 700.0 7078 0.07064 98. I I

Another equation of interest is precession in the apsides, computed by

A (-2.06474x 1014a -3"5(1 -e2)-2(2- 5sin20(t - to) (19)

The elliptical orbits were generated using an orbit generation program developed by Jet

Propulsion Laboratory (Khan, 1978). This FORTRAN program is adapted to run on an IBM

Personal Computer. Only the J2 component of the gravity field was considered in generating

the orbit, since other terms in the potential have negligible effect.

2.4 Ozone Retrieval Algorithm

To understand the effects of solar and viewing geometry on the retrieval of ozone, it was

necessary to utilize the TOMS ozone retrieval algorithm. To understand the algorithm it is

helpful to review the TOMS sensor.

The TOMS sensor contains six wavelength bands (Table 5). The first two bands lie in a spectral

region where ozone does not absorb, and consequently are used to determine the atmospheric

reflectivity. The last four bands (the numbering is not in spectral order) are in regions where

ozone absorbs, and it is these bands that are primarily used to determine ozone.

The TOMS ozone algorithm is essentially an interpolation of a precomputed table relating

predicted radiance received by the sensor to ozone amount, for a series of solar and viewing

geometries. The look-up table contains radiance values determined by multiple scattering theory.

To account for the variation in the shape of the ozone profiles with latitude and with total ozone,

the current algorithm (Version 6) uses three sets of profiles: a set of three profiles for 15°S to

15°N, a set of ten profiles for the 45 ° latitude, and another set of ten profiles for all latitudes

poleward of 75 °. In the current implementation, the profiles are assumed hemispherically

symmetrical. Between 15" and 75 ° , the ozone amounts are independently derived from the

adjacent set of profiles and linearly interpolated to the measurement latitude.



Table 5. Bands of the TOMS Sensor and Associated Ozone Absorption
Coefficients

Wavelengths are in Angstroms and absorption coefficients in (atm-cm) "1

Band Wavelength Absorption Coefficient

1 3600 0

2 3800 0

3 3125.14 1.64870

4 3175.12 0.87349

5 3312.53 0.14054

6 I 3398.61 0.02450
!

Given solar viewing geometry, latitude, and an ozone profile, the algorithm produces theoretical

N values, where

N = -1001og_0(Io/F), Io is the predicted radiance at the satellite, and F is the solar irradiance

incident at the top of the atmosphere (wavelength dependence is suppressed). From the N values

are derived the N-pairs, the difference of the N values at the ozone-absorbing wavelengths.

There are three N-pairs, Band 3-5 (N,, or the A pair), Band 4-6 (Nb, or the B pair), and Band

5-6 (No, or the C pair). Given these N-pairs and the total ozone, a relationship is constructed,

known as the N tables. Examples are shown in Figure 3 for the three latitudinal bands. (The

extreme solar and viewing geometries used here (Table 6) were deliberately selected to represent

situations where the ozone retrieval errors would be maximum).

Given a radiance observation by the sensor, the radiances are converted into N values and

eventually N-pairs for the given location and geometry. Three independent estimates of total

ozone are obtained using the pairs defined earlier. These three independent estimates combined

into a weighted mean, called the "best ozone" by the algorithm. Individual pair weights Wi are
calculated as follows.

(20)

where f_ is the ozone amount, the subscript i refers to the pair (A, B, or C), and the A, to a

subtraction involving the two bands that make up the pair. Before applying these weights, they
are normalized

W_ = W/(WA + WB + Wc) (21)

10
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Figure 3. Ozone N-tables relating N-pairs to ozone for three latitudes. Solar and viewing geometries are in

Table 6.
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Table 6. Solar and Viewing Geometries for Three Latitudes Used

to Obtain the Ozone N-Tables Shown in Figure 3 and Used in Later

Analyses

2°N 60°N 90*N

0o 10.6" 83.6* 87.8 °

0 63.3 ° 38.8 ° 54.4 °

4_-4_o 13.1" 85.3* -271.5 °

Then

= FAaA + FBth Wb rc ac (22)

where the f_i's are the ozone estimates for each pair, and the fi's are correction factors needed

to correct for calibration-related biases between the pairs, specific for the Nimbus-7 TOMS.

These factors were set to unity in the present analysis.

2.5 Ozo.ne Retrieval Error Due to Attitude Uncertainty

The procedure for investigating ozone errors due to attitude uncertainties is described in detail

in Table 7. For this effort, the maximum error in ozone due to attitude uncertainty was

preferred. The viewing geometry of the North Pole was selected as the maximum scan angle

with the maximum range in 0o. This corresponded to the right-hand side of the scan. Then the

attitude configuration that produced the greatest change in solar and viewing geometries for this

scan position was determined, given a 0.1 ° maximum in each of the three axes. The

configuration that produced maximum changes was:

pitch =
roll =

yaw =

0.1 ° (forward along subsatellite track),

0.1 o (toward the east),

-0.1 ° (toward the west).

Three initial ozone values (130, 320, and 570 DU) were used that represent low, medium, and

high ozone, and are located between tabulated values in the ozone N-tables to include

interpolation error. Finally, an entire year of subsolar positions was simulated to determine

when the maximum error in ozone occurred. The maxima for all ozone values were in late

autumn when 0o was near maximum (> 88°); on Julian Day 261 for low ozone, Julian Day 260

for medium ozone, and Julian Day 255 for high ozone.

2.6 Ozone Retrieval Error due to Ozone Profile Uncertainty

In the current TOMS algorithm, perhaps the most serious error in deriving total ozone is the

error due to profile shape uncertainty (Stolarski et al., 1990). As described by Klenk et al.,

(1982), this error increases with increasing optical path length, and is hence a function of 0o, 0,
and the total ozone amount.

12



Table7. Determination of Error Due to Attitude Uncertainty

1. Select Geometry 00, O, 0-0o
a. For 90°N.

b. Three ozone amounts, low (130 DU), medium (320 DU), high (570 DU).

2. Compute upper- and lower-bound ozone for each ozone amount (e.g., for 320 DU, lower-bound is

275 DU, upper-bound is 325 DU, since the ozone N-Tables are in increments of 50 DU).

3. Compute N-values and N-pairs at upper- and lower-bounds for each zone amount. These are the

N-tables to be used for computation of ozone.

4. Change geometry to +0.1 ° pitch, +0.1 ° roll, -0.1 ° yaw.

5. Compute N-values and N-pairs for this new geometry.

6. Use the N-table computed in Step 3 to compute ozone for each N-pair using linear interpolation.

7. Weigh the ozone values in Step 6 to obtain "Best Ozone."

8. Subtract input ozone from ozone computed in Step 7 = _ (error).

9. Perform for each altitude.

Table 8. Determination of Error Due to Ozone Profile Uncertainty

1. Select Geometry Oo, 0, _b-_bo

a. For three latitudes (2*N, 60°N, 900N).
b. Three ozone amounts, low (130 DU), medium (320 DU), high (570 DU).

2. Compute upper- and lower-bound ozone for each ozone amount (e.g., for 320 DU, lower-bound is

275 DU, upper-bound is 325 DU, since the ozone N-Tables are in increments of 50 DU).

3. Compute N-values and N-pairs at upper- and lower-bounds for each zone amount. These are the

N-tables to be used for computation of ozone.

4. Change latitude, keeping geometry fixed to next highest latitude bin for low and mid-latitudes; next
lowest latitude bin for high latitude.

5. Compute N-values and N-pairs at this new latitude.

6. Use the N-table computed in Step 3 to compute ozone for each N-pair using linear interpolation.

7. Weigh the ozone values in Step 6 to obtain "Best Ozone."

8. Subtract input ozone from ozone computed in Step 7 = _ (error).

To simulate the effect of this uncertainty, the procedure outlined in Table 8 was used. The key

feature of this procedure is to use the difference in total ozone amount derived from the two sets

of standard ozone profiles, for latitudes closest to the measurement latitude, as a measure of

profile uncertainty. Although the error for any single retrieval cannot be predicted without

knowledge of the exact ozone profile, it is expected that the errors derived using our procedure

provide a rough measure of the profile sensitivity of the TOMS ozone algorithm. A more

complete treatment of this problem is beyond the scope of this study.

13



Nevertheless,this profile uncertaintyis takenhereto bea measureof the inherenterror of the
TOMS ozonealgorithm, in order to quantifytheeffectsof changingsolarandviewing geometry
and ECT on ozoneretrieval. It is not ascompleteas the inherenterror of the algorithm, but
sufficeshere to show a measureof the dependenceof the algorithm on the variables under
considerationhere.

This procedure(Table8) is analogousto themethodfor determiningattitudeuncertainty. In this
case,however,theeffectsof thisprofile uncertaintywere simulatedasa functionof altitudeand
ECT. Again threeozoneamountswereselected: low (130 DU), medium(320DU), and high
(570DU). Eachwasusedto createtheN-tablesat solarandviewing geometryfor eachaltitude
andECT, but this time for eachof three latitudes;equator,mid-latitude,and polar.

Unlike thedeterminationof errordueto attitudeperturbations,herethreelocationswereselected
to examinethe errors due to profile uncertainty:equator(2°N), mid-latitude(60°N), and the
pole. For eachlatitude,thescananglewasdeterminedasthemaximumrequiredto producefull
Earth coveragewith successiveorbit scanoverlapaccountedfor. Sincethere is no overlapat
theequator, the maximumscananglewas used. Also, asdiscussedbefore, a uniqueviewing
geometryis required for eachorbit to view the pole. At mid-latitude, scanoverlapmust be
accountedfor. Themaximumspacecraftzenithangleswith nooverlapat this latitudeareshown
in Table9.

Table 9. Maximum Zenith Angle at Mid-Latitude -_600N to Produce Full Earth

Coverage Considering Scan Overlap by Successive (Preceding) Orbits

Altitude (km) 600 700 800 900 955 1000 1100 1200

Max. 0 50.7 44.3 41.4 38.4 38.8 37.2 35.9 36.5

The lack of smoothness in these 0's is due to the peculiarities of orbital coverage, period,

altitude, and discrete pixel packaging. Overlap regions were selected directly from plots of

Earth coverage by the different altitudes.

Also, instead of selecting a day for which errors were maximum, as in the case of the attitude

sensitivity analyses, the error was computed as RMS throughout the year. This takes into

account the changing solar zenith angles through the year.

3.0 _SULTS AND DISCUSSION

3.1 Solar and Viewing Geometry Dependence on Altitude for Circular Orbits

For the circular orbit scenarios, Earth location simulation code allowed the determination of the

effects of orbital altitude on the solar and viewing geometries (specifically, solar and spacecraft

zenith angles, and relative azimuth). This part of the analyses focuses on the changes in solar

and viewing geometry as a function of altitude for these circular orbits.

14



One of the largest differences in the circular orbit scenarios was the maximum scan angle

required to maintain full coverage. It ranged from 60 ° for the 600-km orbit to 45 ° for the

1200-km orbit (Table 3). These scan angles directly affect the spacecraft zenith angle for the

orbits through Eqn. 13. The maximum spacecraft zenith angles produced by these orbital

altitudes are depicted in Figure 4. The zenith angles range from --72 ° for 600 km to --57 ° at
1200 km.

The effect of these changes in scan angles, however, is not as serious as one might think.

Because of scan overlap at higher latitudes, these maximum O's are required for ozone

observations only at the equator.

However, there is a unique spacecraft geometry for each orbit required to view the poles. Since

at the poles the solar zenith angle ozone attains maximum for near-noon ECT's, changes in 0

to view the poles as a function of altitude may be an important factor in ozone retrievals. These

angles are shown in Figure 5. The range in 0 is from --62 ° to 51.5 ° (Figure 5). The patterns

shift discontinuously because these data were generated by selecting the pixel nearest the North

Pole for each orbit; the sensor scan steps are discrete. An analytical solution for 0 as a function

of altitude would yield a monotonic distribution, but the numerical solution used here is more

realistic, conveying some of the peculiarities of satellite observations.

The effect of altitude on solar zenith angle is shown in Figure 6 as a histogram of the frequency

of occurrence of 0o in bins as a function of altitude. All computations were for a noon ECT at

the equinox. Changing the day of year had no effect on the results. Frequency of occurrence

is shown in order to minimize the effect of the different number of pixels required to maintain

contiguous Earth coverage as a function of altitude. In contrast to 0, there is no effect of

altitude on 0o (Figure 6), as long as the orbits are Sun-synchronous and at the same ECT. This

has major repercussions on the selection of orbit, since 0o is a major contributor to the error in

ozone retrievals. The analyses presented here demonstrate that orbital altitude will not affect

the retrieval of ozone, at least as related to 0o, if a Sun-synchronous orbit and an optimal ECT

are maintained. Analysis of the effect of different ECTs will be discussed shortly.

There were relatively minor differences in relative azimuth angle (_b-4,o) as a function of altitude

(Figure 6). The small differences that did occur were the result of 4,, rather than 0o, and were

actually the result of pixel discretizafion. It is reasonable to conclude that, like 80, orbital

altitude has negligible effect on ozone retrieval, as long as the orbit is Sun-synchronous and

near-noon.

3.2 Effects of ECT on Solar Geometry

The ECT is the local time at which the subsatellite track crosses the equator on ascending node.

For Sun-synchronous orbits, this local time is the same for every orbit. Though the local times

vary along orbit, it remains constant for any given point. For example, for a noon ECT, the

satellite will cross the South Pole in the afternoon or evening and the North Pole in the morning.
But the local time at which the satellite crosses the North or South Pole will be the same for

every orbit.
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Although the SCOUT will be initially launched in a near-noon ECT, as was Nimbus-7, it may

drift. Nimbus-7 drifted by less than 1 hour in its l I-year lifetime. It is important to know the

effects and tolerance levels of local time drift in order to place thrusters and fuel on the satellite.

Analysis of the effects of ECT was restricted to the Nimbus-7 orbit (955 km) and focused on

solar geometry. Along-track, across-track distributions of 0o for the Nimbus-7 orbit are shown

in Figure 7 for the equinox. The symmetry is readily apparent, although the lowest 00 is located

slightly east of center. This is due to the time correction for the 0o computation. As noted

earlier, the solar day varies in length throughout the year such that it is not directly overhead

at the vemal equinox at noon (Iqbal, 1983).

For a 1:00 p.m. ECT, the subsolar point is west of the subsatellite point, producing greater 0o

at the scan center and right-hand sides, and lower 0o at the left-hand side of the scan (Figure 7).

At a 3:00 p.m. ECT, the situation is exacerbated, with 0o nearly 45 ° near the center of the scan

at the equator and generally much higher 0o throughout the ascending node (Figure 7). Note also

that the 90 ° 0o contour line (the terminator) now appears prominently in the Southern

Hemisphere south of -73 ° on the scan right-hand edge. Thus there is loss of daytime coverage

in the Southern Hemisphere, which is required for ozone retrievals.

For a morning ECT the situation is reversed: the subsolar point is now east of the subsatellite

point and at 9:00 a.m. there is loss of daytime coverage in the Northern Hemisphere.

Otherwise, the patterns are simply mirror-images of the afternoon ECT's.

Similarly, there are major changes in the distribution of relative azimuth (Figure 8). There is

only a small portion of the ascending node where cb-_boexceeds 100 ° (just west of the subsatellite

point), while nearly all of the left-hand side of the scan exceeds 100 ° for a 1:00 p.m. orbit. The

left-hand side of the scan for the 3:00 p.m. orbit is entirely greater than I30 ° .

These results suggest strongly that ECT may be an important factor in maintaining a consistent

ozone time series, particularly with respect to Earth daytime coverage.

3.3 Effects of ECT on Earth Daytime Coverage

More important than the changes in solar zenith and azimuth, and their potential effect on the

accuracy of ozone retrievals, is the loss of daytime coverage by the different ECT's. For this

analysis, daytime was considered as those pixels where 0° was < 88 ° (the highest 0o useable in

the ozone algorithm). The entire ascending node was simulated; if any pixel in any scan

contained 00 < 88 °, the entire latitude (in 1 ° bins) containing the pixel was assumed covered in

daylight. This analysis was run over the course of the year to show the changes in daylight

coverage as a function of the solar declination.

Daytime coverage for noon +3 hours ECT is shown in Figure 9, where the diamonds denote

the afternoon (3:00 p.m.) ECT and the upside-down triangles, the morning (9:00 a.m.) ECT.

Noon ECT is the solid line, which forms the boundary for the coverage plot. As expected, there

was no daytime coverage of the Antarctic during the Southern Hemisphere winter (julian Day

100 - 250) nor of the Arctic during the Northern Hemisphere winter (Julian Day 290 - 60) for

any ECT.
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However, the afternoon orbit resulted in decreased coverage relative to the noon orbit in the

Southern Hemisphere, but no change in coverage occurred in the Northern Hemisphere

(Figure 9). The reverse situation occurred with respect to the morning orbit--decreased daytime
coverage of the Northern Hemisphere and no change in the Southern. This is due to the

inclination of the Sun-synchronous orbit: the inclined orbits travel South to North, but are east

of the equator crossing longitude in the Southern Hemisphere (and in afternoon local time for

a noon ECT), and west of the equator crossing longitude in the Northern Hemisphere (and

therefore in morning local time for a noon ECT). For a morning ECT, the subsolar point is

located east of the equator crossing longitude, and therefore actually closer to the easterly

position of the subsatellite track in the Southern Hemisphere. Thus no change in Southern

Hemisphere daytime coverage results from a morning ECT. However, in the Northern

Hemisphere, the westerly track of the subsatellite track places the orbit even further away from

the subsolar point than the noon orbit (local time is earlier in the morning), thus resulting in a
loss of coverage. The reverse situation occurs with respect to an afternoon orbit--the subsolar

point is farther away from the subsatellite track in the Southern Hemisphere, thus placing the

pixels in later afternoon and resulting in loss of coverage. But no coverage loss is observed in

the Northern Hemisphere. This is a matter of ground distance between the subsolar and

subsatellite points. It should be noted that the noon ECT produces the maximum daytime
coverage for any day of the year.

If more extreme examples of ECT's are examined, it is seen that at +6 hours from noon, there

is significant daytime coverage loss in the Southern Hemisphere for a morning orbit and in the

Northern Hemisphere for an afternoon orbit (Figure 10). But the coverage losses in the opposite

hemisphere are now extremely pronounced--loss in the Southern Hemisphere extends to nearly

-20°S for a 6:00 p.m. ECT and in the Northern Hemisphere to 20°N for a 6:00 a.m. ECT.

In an effort to quantify these daytime coverage losses due to ECT and to find the limits of

acceptability, the loss in coverage was computed from a noon ECT in degrees latitude. Two

plots are presented, one for Southern Hemisphere loss due to afternoon ECT's, and one for

Northern Hemisphere loss due to morning ECT's. Recall that these scenarios emphasize the
maximum in coverage loss.

Figure 11 shows that 6 ° latitudinal daytime coverage loss occurs for ECT's within 3 hours of

noon. Coverage loss increases rapidly each hour outside this limit, eventually reaching nearly

53 ° coverage loss for 6:00 a.m. and 6:00 p.m. ECT's. Loss is minor (< 5 °) for ECT's within

2 hours of noon. These results suggest that orbit drift to noon +2 hours ECT may be

acceptable, but that departures from noon produce substantial daytime coverage loss. Departures
greater than +3 hours from noon ECT must be avoided.

3.4 Effects of Elliptical Orbits on Earth Daytime Coverage

The scan period of the Nimbus-7 TOMS (8 sec) was designed to maintain contiguous Earth

coverage along-track. This scan period was determined by knowledge of the ground speed and

IFOV of the spacecraft. The SCOUT/TOMS may be placed in a temporary transfer elliptical

orbit before proceeding to a circular one. For an elliptical orbit, the ground speed will change

along orbit: at perigee the ground speed will be greater and at apogee it will be less. This fact,
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coupled with a reduced ground IFOV at perigee, will affect the Earth coverage if the scan period
remains fixed.

In the simulations presented here, it is assumed that the SCOUT/TOMS will be designed for a

Nimbus-7 type orbit--circular at 955 km. The effect of elliptical orbits on Earth coverage due

to the changing ground speed and ground IFOV is investigated for a fixed scan period of 8 sec.

The maximum ground speed and minimum ground IFOV is attained at perigee for an elliptical

orbit. Thus the maximum coverage loss will occur at perigee. Furthermore, because of slant

path length considerations and the widening of pixel areas, the maximum loss will be at nadir.

Ground speeds at perigee for several elliptical orbit scenarios are shown in Figure 12. The

maximum occurs at perigee for the 200- to 1200-km orbit, at 8.5 km s a, and linearly decreases

for the remaining scenarios.

The associated coverage loss at nadir is shown in Figure 12, where a maximum loss is attained

at the 200- to 1200-km scenario (45 kin), and the minimum at 955 km circular (0 km--no loss).

A linear trend in coverage loss is apparent for the other elliptical scenarios.

There is no loss in coverage at apogee--in fact, there is increased overlap for an apogee at 1200

km. However, any portion of the orbit where the altitude is < 955 km will result in loss of

coverage, if the scan period remains fixed.

This maximum coverage loss at perigee will not occur at the same location on the Earth, since

the perigee moves opposite the direction of the satellite motion. The rate is approximately 3

degrees day a for a 400- to 955-km orbit. This means that if the perigee first occurs at the South

Pole, it (and the coverage gap associated with it) will move to the equational region in a month.

The impact of this is that at crucial times TOMS will miss areas for as long as a few months.

3.5 Error in Ozone Retrieval Due to Attitude Uncertainty

Specifications for the TOMS/SCOUT mission include a 0.1 ° attitude knowledge requirement.

This requirement is on each axis (pitch, roll, yaw) independently. Here the impact of the

attitude uncertainty on the retrieval of ozone is investigated using the TOMS ozone retrieval

algorithm.

Recall that the maximum errors were simulated: a viewing geometry required for North Pole

coverage, attitude configuration within the 0.1 ° specifications to produce the maximum error,

and on the day of year when errors were maximum. Thus the analysis is for a worst-case
scenario.
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For the Nimbus-7 (955-km) orbit, the maximum errors in retrieved ozone due to attitude

uncertainty were:

Low Ozone (130 DU)

Medium Ozone (320 DU)

High Ozone (570 DU)

0.59 DU (0.45 %)

1.13 DU (0.87%)

1.26 DU (0.22%)

In each case the attitude perturbation produced a slightly higher estimate of ozone, and the error

was thus positive. The error for the medium and high ozone cases exceeds the desired accuracy

of 1 DU, but is a small error in percent.

The attitude uncertainty error in ozone was also examined for the other 7 orbit scenarios, again

all at the North Pole viewing geometry. The changes (increase or decrease) in error from that

at the Nimbus-7 orbit are shown in Figure 13. Errors due attitude uncertainty were generally

small, never exceeding 1.5 DU even under the worst conditions simulated here.

The relative ozone error due to attitude uncertainty was computed by dividing the error at a

given altitude by that at 955 km (Figure 13). Values less than 1 indicate a decrease in the error

due to attitude uncertainty relative to Nimbus-7, while values greater than 1 indicate an increase.

Clearly, the lower altitude orbits produced less ozone error due to attitude uncertainty, while the

high altitude orbits produced greater error. This suggests greater sensitivity of higher altitude

orbits to attitude perturbations.

These results are because for lower altitude orbits, a small change in attitude produces a smaller

change in pointing direction (and in solar and viewing geometries) than for high altitude orbits.

Thus higher altitude orbits are more sensitive to attitude perturbations than are lower altitude

orbits. Lower altitude orbits reduce the sensitivity of the ozone retrieval algorithm to attitude

uncertainty.

Regardless, however, it must be emphasized that the errors are small even under these simulated

worst-case conditions. The conclusion drawn from these analyses is that orbital altitude makes

negligible difference in ozone retrieval, given an attitude knowledge of 0.1 ° in each axis.

Errors were also examined for an attitude perturbation of 1 ° in each axis. The errors appeared

to be linear, increasing to _ 10 times the value at 0.1 °. These new errors at an uncertainty of

1 ° were: low ozone = 5.95, medium ozone = 11.51, high ozone = 12.84 DU. These analyses

had to be performed one day earlier than the 0.1 ° analyses because the 1 ° attitude perturbation

resulted in a solar geometry greater than the 88 ° threshold.

3.6 Error in Ozone Retrieval as a Function of Altitude

The changes in viewing geometry (specifically the spacecraft zenith angle) due to orbital altitude

suggest that altitude may affect the retrieval of ozone. This is critical to maintain a coherent

time series of ozone data to understand long-term trends in ozone. However, changes in viewing

geometry do not by themselves demonstrate a degradation of ozone retrieval. It is thus

necessary to understand how these geometrical considerations relate to ozone retrievals.
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It has been shown how altitude affects 0 at the equator and poles, and that it has no effect on

0o and only minor effect on _b-4,o. The question here is: how do these changes in 0 relate to

ozone retrieval? A partial answer to the question may be inferred from Figure 14, which shows

the changes in the ozone N-pairs with 0. This is essentially a plot of ANi/,_0, where the

subscript i denotes the N-pair A, B, or C. Three ozone values are depicted; 150, 300, and 500

DU.

Over the range 0 ° < 0 < 40" there is very little change in Ni, but for O > 60 ° the relationship

is decidedly nonlinear, especially for N, and Nb. These results suggest that the ozone algorithm

is insensitive to changes in O for angles < 40 °, but may be sensitive to angles > 60 °. Recall

that the range of 0 to view the North Pole was from --62 ° at 600 km to 51.5 ° at 1200 km.

This range of O is in the region of the ANi/A0 where the relationship is slightly nonlinear. Thus,

one must conclude that the range in O incurred by these altitudes may be important in the
retrieval of ozone.

However, a quantitative estimate of the error in ozone retrieval due to altitude is still

undetermined. To address this question, the profile uncertainty was used to estimate the error

in ozone due to altitude, through the changes in 0. Again three ozone amounts were used; low

(130 DU), medium (320 DU), and high (570 DLO ozone. These values may be compared to the

figures of 0 at the equator and to view the North Pole (Figures 4 and 5).

Baseline values were obtained by performing this procedure for the Nimbus-7 (955 kin) orbit.

RMS errors due to profile uncertainty are shown in Table 10.

Table 10. RMS Error in Dobson Units (Maximum Error in Parenthesis) Due

to Ozone Profile Uncertainty at 955 km for Three Latitude Regions and Three
Ozone Amounts

The sign in the RMS errors denotes whether this is an underestimate or

overestimate: underestimate is negative

Equator Mid-Latitude Pole

Low Ozone - 2.4 (-2.7) 2.1 (2.3)

Medium Ozone -2.1 (-2.3) -8.2 (-21.4) 14.9 (52.7)

High Ozone -- -1.8 (2.2) 1.3 (2.3)

A very large error due to profile uncertainty is apparent for medium ozone at mid-latitudes and

the poles. Errors elsewhere were fairly small, especially in percentage. No attempt was made

to compute error for low or high ozone at the equator because of a lack of physical realism here.

This error was expressed as a function of altitude as shown in Figure 15. Only the medium

ozone is shown, since the errors for other ozone amounts were small. For all altitudes, the error

was high at mid-latitude and the pole. The error due to profile uncertainty was smaller at low

latitude but approached 5 DU at 600-km altitude.
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Change in error as a function of altitude was computed as a percent at different orbital altitudes

relative to the error at 955 km (i.e., relative error). These changes are plotted in Figure 15 for
the medium ozone amount. The increase in error for medium ozone at 600 km was 140%

greater than that at 955 km at the equator. The error decreased with increasing altitude,

becoming smaller than the error at 955 km at altitudes > 1000 km. The error was small at mid-

latitude and the pole.

The changes in error due to altitude are due entirely to the change in 0. Thus altitude can

seriously affect ozone retrievals due to changes in 0. A 600-kin orbit can increase the error due

to profile uncertainty by as much as a factor of 2.5 at the equator. Higher orbits have little

effect as long as the orbits are Sun-synchronous and near-noon local time. In fact, at altitudes

greater than 955 kin, the ozone profile uncertainty error was actually smaller than at 955 km at

the equator.

The high and low ozone amounts indicated very little error due to profile uncertainty at any

latitude. The medium ozone exhibited the largest error because it is this profile that changes the
most from latitude bin to latitude bin.

3.7 Error in Ozone Retrieval as a Function of ECT

As a final analysis, attention is turned to the ozone errors incurred by changing ECT. The loss

in Earth daytime coverage due to ECT is noted, but now the examination of the effects of ECT

on ozone retrievals through changing 00 is desired. This analysis follows the same procedure

as is used in the altitude errors section, using the ozone profile uncertainty as the means to

assess errors in algorithm retrievals. However, this time the ECT is changed and spacecraft

geometry is fixed. Thus, the only variables are the solar zenith and relative azimuth angles.

Again for this analysis, we computed RMS errors over the year to take into account the changing

solar position through the year. However, because of pronounced asymmetries in the error

distribution, the left-most pixels in the sensor scan were examined in addition to the fight-most

pixels.

As with altitude, the greatest errors in ozone retrieval due to profile uncertainty occurred for

medium ozone for all three latitudes (Figure 16), where errors up to 18 DU were attained for

mid-latitude at a 10:00 a.m. ECT. Errors did not exceed 2.5 DU for the low and high ozone

amounts at any latitude.

At the equator, errors were greater for afternoon ECT's than for morning ECT's for the fight-

most pixel, which is closer to the subsolar point in the morning than in the afternoon, resulting

in a lower 0o. The reverse pattern occurred with respect to the left-most pixel, which attained

maximum error for a morning ECT. An interesting event is the location of the minimum error.

For the right-most pixel, the minimum occurred at 1:00 p.m., rather than at 11:00 a.m., when

the solar position is closest to the pixel. Figure 17 shows the subsolar positions throughout the

year relative to the right-most pixel at the equator. Clearly, the subsolar positions for an 11:00

a.m. ECT are much closer to the fight-most pixel than at 1:00 p.m., resulting in smaller 0o.

The key to this apparently anomalous condition is the relative azimuth. This changes only

moderately throughout the year for the right-most pixel at 1:00 a.m., ranging from about -70 °
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Figure 16. Ozone error due to profile uncertainty as a function of equator crossing time (ECT), expressed as

RMS error throughout the year to take into account the changing solar declination. Top: an equatorial pixel.

Only medium ozone is depicted because low and high ozone amounts are rare in the tropics. The higher error

for an afternoon ECT is because the extreme riglit-hand side of the scan is simulated here. The left-hand side

of the scan is shown, also, and shows the reverse pattern. Center: a mid-latitude pixel (60°N'). Three ozone

amounts are shown. The maximum error occurs for medium ozone (320 DU). Bottom: a polar pixel. Again
the maximum error is for medium ozone.
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in the Northern Hemisphere summer to _45 ° for winter (Figure 17), an absolute range of

_-70 °. Conversely for an 11:00 a.m. ECT, the relative azimuth ranges from -_250 ° in

summer, through 180" in spring/autumn, to --80 ° in winter (Figure 17), an absolute range of

-- 170 °. Although the dependence of the ozone retrieval algorithm to relative azimuth is small,

it is about of the order of difference seen here between 11:00 a.m. and 1:00 p.m. (-_ 0.5 DU).

The 11:00 AM ECT provides smaller 8o than 1:00 p.m., but 80 at 1:00 p.m. is not large, and

the change in relative azimuth throughout the year at 11:00 a.m. is much greater, causing larger

error in ozone retrieval than at 1:00 p.m. The reverse pattern occurs for the left-most pixel.

At mid-latitude, it is interesting to note the maximum error at 10:00 a.m. ECT rather than at

the extreme ECT's simulated here (Figure 16). Again referring to Figure 17, at 9:00 a.m. and

3:00 p.m., a substantial number of solar positions exceed the 88 ° threshold for 8o for application

of the algorithm. Thus these data are not included in the RMS error results. In contrast, all of

the solar positions at 10:00 a.m. are within the threshold, and are thus included in the analyses.

A very large number of these positions occur at very high 8o ( > 85°), and the large error in

ozone in the algorithm at these times weighs very heavily in the final RMS errors. Thus the

error at 10:00 a.m. exceeds the more extreme 9:00 a.m. ECT because of exclusion by the

algorithm.

Finally, one may note the relatively small dependence of ozone error on ECT at the North Pole

(Figure 16). At this location, 00 does not change as a function of ECT throughout the year

(Figure 17); only the relative azimuth changes. As noted before, these changes produce errors

of the order of 0.5 DU. This is about the range in error observed at the pole as a function of

ECT (Figure 16).

Relative errors to a noon ECT (Figure 18) reflect the RMS errors depicted in Figure 16.

Generally, errors due to profile uncertainty reached a minimum at or very near the noon ECT

for most cases. The exception was for low ozone, which surprisingly attained maximum at

noon. At mid-latitude, errors for medium and high ozone reached a maximum at 10:00 a.m.

ECT, where they were 2.2 and 1.4 times the error at noon. This resulted in an increase in error

of nearly 10 DU for the medium ozone case. As noted earlier, the maximum at 10:00 a.m.

rather than 9:00 a.m. is a consequence of Earth daytime coverage and the 88 ° algorithm

threshold for 80.

These results suggest that ECT not only affects Earth daytime coverage, as seen in Figures 9,

10, and 11, but also the retrieval of ozone as estimated by the profile uncertainty. Thus,

although the change in ECT from noon +3 hours did not change Earth coverage significantly,

it did introduce potential error in the retrieval of ozone. This may produce a bias in ozone

observations, decreasing the reliability of obtaining unaliased long-term trends.

36



"E
o
o
z

L-

o

LLI

I--
d

o
L.-

!11

"E
o
o
z
v

LLI

F-

ILl

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

1.1

1

0.9

Relative Ozone Error to Noon
Equator

10 11 12" 13 14 15

Mid-Latitude
2.2

2.1 • Low Ozone

2 ' _ Ozone
° Hk_ Ozone

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.16

9 10 11 12 13 14 15

Pole
1.15
1.14
1.13
1.12

Z 1.11

1.1
1.09
1.08
1.07

L_ 1.06
_ 1.os

_ 1.041. O3

" 1.02
1.Ol

I
LLI 0.99

0.98
0.97
0.96
0.95

/
• Low Ozone /
, Medum O-zone /
o _ Ozone

!

9 10 11 12 13 14 15

Equator Crossing Time (Local)

Figure 18. Relative error in ozone compared to a noon ECT. Noon represents the minimum for medium and

high ozone, but the maximum for low ozone.

37



4.0 CONCLUSIONS

Extensive simulations of various orbital scenarios were performed to assess the potential impacts

of candidate launch vehicles for a proposed follow-on TOMS sensor. Specifically examined

were the effects of 1) orbital altitudes on solar and viewing geometry and ozone retrieval

accuracy, 2) ECT on solar geometry, Earth daytime coverage, and ozone retrieval accuracy, 3)

attitude uncertainty on ozone retrieval accuracy, and 4) orbital eccentricity on Earth daytime
coverage.

The error in ozone retrieval due to profile uncertainty and loss of Earth daytime coverage

associated with ECT was of paramount importance. In order to maintain a continuous, long-

term ozone time series, it is critical that the ECT be kept close to noon (local time). ECT's

within _+1 hour of noon are acceptable (-- 1 ° latitudinal coverage loss), but those greater than

__.2 hour of noon should be avoided (--6 ° loss of latitudinal coverage at ___3hours). The loss

of coverage associated with ECT's > _+6 hours of noon is so extensive (--53 ° in latitudinal

coverage) that these crossing times must be prevented. The effects of changing altitude are less

important, and altitudes greater than or equal to 800 km will produce errors relative to Nimbus-7

(955 km) of less than 1 DU. An altitude of 600 km, however, can produce errors in ozone
retrieval of up to 3 DU in the worst case, and thus is less desirable.

Although changing the ECT less than +3 hours from noon produced small change in Earth

daytime coverage, it did result in an increase in ozone error due to profile uncertainty. The

minimum error occurred for noon ECT's, except in the case of low ozone. The error reached

a maximum of 10 DU for medium ozone at a 10:00 a.m. ECT, compared with a noon ECT.

The error for medium ozone at the equator increased by _-3 DU at a 3:00 p.m. ECT compared

with noon. For other ozone amounts and latitudes, the change in error was less than 1 DU

compared to noon.

To maintain contiguous Earth coverage, the maximum scan angle of the sensor must be

increased with decreasing orbital altitude. The maximum scan angle required for full coverage

at the equator varies from 60 ° at 600-km altitude to 45 ° at 1200 km. The increase in scan angle

produces an increase in spacecraft zenith angle 0, which decreases the ozone retrieval accuracy.

The range in 0 was --72 ° for 600 km to --57 ° at 1200 km. However, because of scan overlap

between adjacent orbits, the highest spacecraft zenith angles are required only at the equator.

Despite overlap, there is a unique scan angle required to view the poles for each altitude. The

0 associated with these scan angles ranged from 62.5 ° at 600 km to 52 ° at 1200 km.

These changes in spacecraft zenith angle due to altitude resulted in greater than a factor of two

(138%) increase in RMS error due to ozone profile uncertainty in the TOMS ozone retrieval

algorithm at an altitude of 600 km, or nearly 3 DU. Altitudes greater than or equal to 900 km

produced errors that did not exceed the error at 955 km by more than 10% (< 1 DU), and often

produced less error than at 955 km.

Loss of Earth coverage due to orbital eccentricity may be important, especially for extreme

cases. A 45-kin gap in coverage at nadir results at perigee from an orbit with 200-km perigee

and 1200-km apogee, which approximately equals the ground IFOV for Nimbus-7 TOMS.
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Reducedeccentricityresults in lessEarth coverageloss. Temporary transferelliptical orbit
strategiesmust have mechanismson board to reduceextremeeccentricity or suffer Earth
coverageloss, and impair theacquisitionof long-termozonedatabases.

Finally, anattitudeuncertaintyof 0.1° oneachaxisis sufficient,andproduceserrors < 1.3DU
evenunder theworstconditionsfor a 955-kmorbit. This error increaseswith altitude,but only
attainsa maximumof 1.4DU at 1200km.
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